On Space–time Adaptive Schemes for the Numerical Solution of Pdes
نویسندگان
چکیده
A fully adaptive numerical scheme for solving PDEs based on a finite volume discretization with explicit time discretization is presented. The local grid refinement is triggered by a multiresolution strategy which allows to control the approximation error in space. The costly fluxes are evaluated on the adaptive grid only. For automatic time step control a Runge–Kutta–Fehlberg method is used. A dynamic tree data structure allows memory compression and CPU time reduction. For validation different classical test problems are computed. The gain in memory and CPU time with respect to the finite volume scheme on a regular grid is reported and demonstrates the efficiency of the new method. Résumé. Nous présentons ici une méthode numérique entièrement adaptative pour les EDP, basée sur une discrétisation spatiale en volumes finis et une intégration temporelle explicite de type Runge-Kutta. Une stratégie de type multi-résolution permet d’adapter localement le maillage tout en contrôlant l’erreur d’approximation en espace. Les flux sont évalués sur la grille adaptative uniquement. Une méthode de type Runge-Kutta-Fehlberg est employée afin de choisir automatiquement le pas de temps tout en contrôlant l’erreur d’approximation. Nous proposons en outre une méthode où le pas de temps dépend de l’échelle, afin d’éviter d’utiliser sur tous les niveaux le pas de temps qui garantit la stabilité numérique sur le niveau de grille le plus fin. La structure de données est organisée en arbre graduel, ce qui permet de réduire significativement la place mémoire et le temps de calcul nécessaires. Nous validons ce nouveau schéma numérique à l’aide de différents cas-tests classiques. Nous estimons le gain en place mémoire et en temps de calcul par rapport au même calcul en volumes finis sur la grille la plus fine, afin de montrer l’efficacité de la méthode. ∗ The authors thank the CIRM in Marseille for its hospitality and for financial support during the CEMRACS 2005 summerprogram where part of the work was carried out. ∗∗ M.O. Domingues thankfully acknowledges financial support from the European Union project IHP on ’Breaking Complexity’ (contract HPRN-CT 2002-00286). ∗∗∗ O. Roussel and K. Schneider acknowledge financial support from the DFG–CNRS Research Program ’LES and CVS of Complex Flows’ 1 Laboratoire de Modélisation et Simulation Numérique en Mécanique et Génie des Procédés (MSNM-GP), CNRS and Universités d’Aix-Marseille, 38, rue F. Joliot–Curie, 13451 Marseille Cedex 20, France 2 Laboratório Associado de Computação e Matemática Aplicada (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas, 1758, 12227-010 São José dos Campos, Brazil 3 Institut für Technische Chemie und Polymerchemie (TCP), Universität Karlsruhe, Kaiserstr. 12, 76128 Karlsruhe, Germany 4 Centre de Mathématiques et d’Informatique (CMI), Université de Provence, 39 rue F. Joliot–Curie, 13453 Marseille Cedex 13, France e-mail: [email protected] [email protected] [email protected] c © EDP Sciences, SMAI 2007 Article published by EDP Sciences and available at http://www.edpsciences.org/proc or http://dx.doi.org/10.1051/proc:2007006 182 ESAIM: PROCEEDINGS
منابع مشابه
Investigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods
Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces; cause vibrations in the pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing equations of this phenomenon include a system of first order hyperbolic partial differen...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملSolution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs
Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...
متن کاملImplicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation
In the present work, the numerical solution of two-dimensional variable-order fractional cable (VOFC) equation using meshless collocation methods with thin plate spline radial basis functions is considered. In the proposed methods, we first use two schemes of order O(τ2) for the time derivatives and then meshless approach is applied to the space component. Numerical results obtained ...
متن کاملUsing Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions
Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...
متن کاملTHE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S
In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.
متن کامل